From 1 - 10 / 10
  • The fundamental geological framework of the concealed Paleoproterozoic East Tennant area of northern Australia is very poorly understood, despite its relatively thin veneer of Phanerozoic cover and its position along strike from significant Au–Cu–Bi mineralisation of the Tennant Creek mining district within the outcropping Warramunga Province. We present 18 new U–Pb dates, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), constraining the geological evolution of predominantly Paleoproterozoic metasedimentary and igneous rocks intersected by 10 stratigraphic holes drilled in the East Tennant area. The oldest rocks identified in the East Tennant area are two metasedimentary units with maximum depositional ages of ca. 1970 Ma and ca. 1895 Ma respectively, plus ca. 1870 Ma metagranitic gneiss. These units, which are unknown in the nearby Murphy Province and outcropping Warramunga Province, underlie widespread metasedimentary rocks of the Alroy Formation, which yield maximum depositional ages of 1873–1864 Ma. While parts of this unit appear to be correlative with the ca. 1860 Ma Warramunga Formation of the Warramunga Province, our data suggest that the bulk of the Alroy Formation in the East Tennant area is slightly older, reflecting widespread sedimentation at ca. 1870 Ma. Throughout the East Tennant area, the Alroy Formation was intruded by voluminous 1854–1845 Ma granites, contemporaneous with similar felsic magmatism in the outcropping Warramunga Province (Tennant Creek Supersuite) and Murphy Province (Nicholson Granite Complex). In contrast with the outcropping Warramunga Province, supracrustal rocks equivalent to the 1845–1810 Ma Ooradidgee Group are rare in the East Tennant area. Detrital zircon data from younger sedimentary successions corroborate seismic evidence that at least some of the thick sedimentary sequences intersected along the southern margin of the recently defined Brunette Downs rift corridor are possible age equivalents of the ca. 1670–1600 Ma Isa Superbasin. Our new results strengthen ca. 1870–1860 Ma stratigraphic and ca. 1850 Ma tectono-magmatic affinities between the East Tennant area, the Murphy Province, and the mineralised Warramunga Province around Tennant Creek, with important implications for mineral prospectivity of the East Tennant area. Appeared in Precambrian Research Volume 383, December 2022.

  • The Exploring for the Future program Virtual Roadshow was held on 7 July and 14-17 July 2020. The Minerals session of the roadshow was held on 14 July 2020 and consisted of the following presentations: Introduction - Richard Blewett Preamble - Karol Kzarnota Surface & Basins or Cover - Marie-Aude Bonnardot Crust - Kathryn Waltenberg Mantle - Marcus Haynes Zinc on the edge: New insights into sediment-hosted base metals mineral system - David Huston Scale reduction targeting for Iron-Oxide-Copper-Gold in Tennant Creek and Mt Isa - Anthony Schofield and Andrew Clark Economic Fairways and Wrap-up - Karol Czarnota

  • Mineral exploration in Australia faces the challenge of declining discovery rates despite continued exploration investment. The UNCOVER roadmap, developed by stakeholders from industry, government and academia, has highlighted the need for discovering mineral resources in areas of cover. In these areas, potentially prospective basement is covered by regolith, including transported sediment, challenging many traditional exploration methods designed to probe outcrop or shallow subcrop. Groundwater-mineral interaction in the subsurface has the potential to give the water geochemical and isotopic characteristics that may persist over time and space. Geoscience Australia’s hydrogeochemistry for mineral exploration project, part of the Exploring for the Future Programme, aims to use groundwater chemistry to better understand the bedrock-regolith system and develop new methods for recognising mineral system footprints within and below cover. During the 2017 dry season (May to September), ~150 groundwater samples (including QC samples) were collected from pastoral and water supply bores in the regions of Tennant Creek and McArthur River, Northern Territory. The Tennant Creek region has a demonstrated iron oxide-hosted copper-gold-iron(-bismuth) mineral potential in the Paleoproterozoic and Mesoproterozoic basement and vast areas of regolith cover. Among the critical elements of this mineral system, the presence/absence of redox contrasts, iron enrichment, presence of sulfide minerals, and carbonaceous intervals can potentially be diagnosed by the elemental and isotopic composition of groundwater. The McArthur River region, in contrast, has demonstrated sediment-hosted stratiform lead-zinc-silver mineral potential in the Paleoproterozoic to Neoproterozoic basement and also vast areas of regolith cover. Here, critical mineral system elements that have the potential to be identified using groundwater geochemistry include the presence of felsic rocks (lead source), carbonate rocks (zinc source), basinal brines, dolomitic black shales (traps), and evaporite-rich sequences. Preliminary results will be presented and interpreted in the context of these mineral systems.

  • This Record presents new Sensitive High Resolution Ion Micro Probe (SHRIMP) U–Pb geochronological results for six drill core samples from the Rover mineral field, an area of prospective Palaeoproterozoic rocks southwest of Tennant Creek that is entirely concealed below younger sedimentary cover rocks. The work is part of an ongoing collaborative effort between Geoscience Australia (GA) and the Northern Territory Geological Survey (NTGS) that aims to better understand the geological evolution and mineral potential of this region. SHRIMP U–Pb detrital zircon results from two samples, a meta-siltstone/mudstone from the Au–Cu–Bi Rover 1 deposit (drillhole WGR1D011; sample BW20PGF090) and a volcaniclastic sandstone from the Explorer 142 prospect (drillhole NR142D001; sample BW20PGF156) gave near identical maximum depositional ages of 1849.1 ± 3.1 Ma and 1848.9 ± 3.0 Ma respectively. The euhedral nature of the zircons in both samples and their unimodal age distributions, support the interpretation that the maximum depositional ages of these samples are good approximations for their true age of deposition. These results are a very close match with U–Pb zircon geochronology of some other drill core samples from the Rover mineral field. Two magmatic rocks from drillhole RVDD0002 (located in the East of the Rover field), gave ages of ca 1851–1850 Ma, while a volcaniclastic sandstone from RVDD0002 gave a maximum depositional age of 1854.0 ± 2.9 Ma (Cross et al 2021). Our new results from drillholes WGR1D011 and NR142D001 confirm the widespread presence of detrital zircons at ca 1854–1849 Ma across much of the Rover mineral field. SHRIMP U–Pb detrital zircon analysis was undertaken on four samples from the base metal Curiosity prospect drillhole, MXCURD002. The first sample analysed GS20PGF058 [520.0–525.7 m], has a maxima at ca 1842 Ma but youngest statistical grouping at 1729 ± 17 Ma (n = 6). This is in stark contrast with a previous sample from this drillhole (GS19DLH0056 [437.63–438.18 m]) that is 82 metres above GS20PGF058, and gave a MDA of 1854.0 ± 2.9 Ma (Cross et al 2021). In an effort to further investigate the ca 1729 Ma date given by GS20PGF058, three further samples were collected from drillhole MXCURD002, one sample below, GS20PGF190 [525.7–531.5 m] and two samples above, GS20PGF085 [515.0–520.0 m] and GS20PGF084 [468.1–473.45 m]. Additionally, samples GS20PGF190 and GS20PGF085 are continuations of the same meta-siltstone/mudstone unit sampled by GS20PGF058. These three samples returned maximum depositional ages of 1851.7 ± 3.9 Ma (GS20PGF085), 1846.6 ± 3.2 Ma (GS20PGF190) and 1841 ± 12 Ma (GS20PGF084). They are also indistinguishable within their uncertainties (MSWD = 0.71, POF = 0.49) and have an average date of ca 1848 Ma. Therefore, the evidence from SHRIMP U–Pb detrital zircon studies of four rocks from drillhole MXCURD002 (this study and that of Cross et al 2021), indicates that the metasedimentary rocks in MXCURD002 were probably deposited at ca 1850 Ma, similar to other metasedimentary units within the Rover mineral field. We suggest that the relatively younger statistical grouping in sample GS20PGF058 at ca 1730 Ma is possibly the result of isotopic re-setting due to a thermal and/or fluid event associated with lead–zinc–copper mineralisation at a similar time which has been recently reported by Farias et al (2022). Although other explanations to explain the ca 1730 Ma grains in this sample such as laboratory contamination or that the zircons have in fact preserved their original crystallisation age, cannot be ruled out. <b>Bibliographic Reference:</b> Cross AJ, Farias PG and Huston DL, 2022. Summary of results. Joint NTGS–GA geochronology project: Rover mineral field, Warramunga Province, July–December 2020. <i>Northern Territory Geological Survey</i>, <b>Record 2022-005</b>.

  • High-grade gold (Au), copper (Cu) and bismuth (Bi) ores in the Tennant Creek goldfield have been mined from hydrothermal magnetite and/or hematite-rich ironstone bodies. Less well known is a style of Au-Cu-Bi mineralisation hosted by quartz vein systems within shear zones outside ironstones. Sensitive High Resolution Ion Micro Probe (SHRIMP) U-Pb-Th analyses of hydrothermal monazite [(LREE)PO4] associated with this mineralisation style at the Orlando East Au-Cu-Bi deposit and Navigator 6 Au prospect yield ages of 1659 ± 13 Ma and 1659 ± 15 Ma, respectively. These ages are nearly 200 million years younger than the age established from ironstone-hosted ores in the district. This new result widens the exploration ‘search space’ for gold into rock formations previously regarded as too young to host this style of mineralisation. <b>Citation:</b> Skirrow, R.G., Cross, A.J., Magee, C.W., Lecomte, A., and Mercadier, J., 2020. Identification of a new ca. 1660 Ma Au-Cu-Bi metallogenic event at Tennant Creek. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>The Mesoproterozoic South Nicholson Basin (SNB) in northern Australia extends across an area approximately the size of Tasmania. It is flanked by the resource rich Mt Isa Orogen and McArthur Basin. Limited outcrop and a dearth of drilling has hampered understanding of the evolution of the Basin, its relationship to other tectonic elements in northern Australia and its resource potential. The lack of any identified interbedded volcanic rocks within the studied sections has led us to concentrate on an extensive SHRIMP U-Pb detrital zircon geochronology program that so far exceeds 40 samples. In addition, we have undertaken SHRIMP U-Pb geochronology of authigenic xenotime. <p>Detrital zircon U–Pb maximum depositional ages (MDA) for the South Nicholson Group (SNG) are up to 100 My younger than previously reported [1]. The new MDA for the Constance Sandstone is ~1470 Ma and is the youngest so far recorded in the SNB. Additionally, it accords with an MDA for the underlying Crow Formation of ~1483 Ma. SHRIMP U–Pb xenotime analyses of authigenic overgrowths on detrital zircons from the Constance Sandstone gave an age of ~1266 Ma. This new data brackets the deposition of the SNG to between 1470 Ma and ~1266 Ma and provides the first evidence that the SNG is broadly contemporaneous with the 1500–1320 Ma Roper Group of the McArthur Basin. Using Multidimensional Scaling of the detrital age distributions has also added an extra dimension to our evolving understanding of the development of the SNB. <p>[1] Carson (2011) Queensland Geological Record 2011/03.

  • Exploring for the Future (EFTF) is a four-year (2016-20) geoscience data and information acquisition program that aims to better understand on a regional scale the potential mineral, energy and groundwater resources concealed under cover in northern Australia and parts of South Australia. Hydrogeochemical surveys utilise groundwater as a passive sampling medium to reveal the chemistry of the underlying geology including hidden mineralisation. These surveys also potentially provide input into regional baseline groundwater datasets that can inform environmental monitoring and decision making. Geoscience Australia, as part of the Australian Government’s EFTF program, undertook an extensive groundwater sampling survey in collaboration with the Northern Territory Geological Survey and the Geological Survey of Queensland. During the 2017, 2018 and 2019 dry season, 224 groundwater samples (including field duplicate samples) were collected from 203 pastoral and water supply bores in the Tennant Creek-Mt Isa EFTF focus area of the Northern Territory and Queensland. An additional 38 groundwater samples collected during the 2013 dry season in the Lake Woods region from 35 bores are included in this release as they originate from within the focus area. The area was targeted to evaluate its mineral potential with respect to iron oxide copper-gold, sediment-hosted lead-zinc-silver and Cu-Co, and/or lithium-boron-potash mineral systems, among others. The 2017-2019 surveys were conducted across 21 weeks of fieldwork and sampled groundwater for a comprehensive suite of hydrogeochemical parameters, including isotopes, analysed over subsequent months. The present data release includes information and atlas maps of: 1) sampling sites; 2) physicochemical parameters (EC, pH, Eh, DO and T) of groundwater measured in the field; 3) field measurements of total alkalinity (HCO3-), dissolved sulfide (S2-), and ferrous iron (Fe2+); 4) major cation and anion results; 5) trace element concentrations; 6) isotopic results of water (δ18O and δ2H), DIC (δ13C), dissolved sulfate (δ34S and δ18O), dissolved strontium (87Sr/86Sr), and dissolved lead (204Pb, 206Pb, 207Pb, and 208Pb) isotopes; 7) dissolved hydrocarbon VFAs, BTEX, and methane concentrations, as well as methane isotopes (δ13C and δ2H); and 8) atlas of hydrogeochemical maps representing the spatial distribution of these parameters. Pending analyses include: CFCs and SF6; tritium; Cu isotopes; and noble gas concentrations (Ar, Kr, Xe, Ne, and 4He) and 3He/4He ratio. This data release (current as of July 2021) is the second in a series of staged releases and interpretations from the Northern Australia Hydrogeochemical Survey. It augments and revises the first data release, which it therefore supersedes. Relevant data, information and images are available through the GA website (https://pid.geoscience.gov.au/dataset/ga/133388) and GA’s EFTF portal (https://portal.ga.gov.au/).

  • This Record presents new Sensitive High Resolution Ion Micro Probe (SHRIMP) U–Pb geochronological results for five drill core samples from the Rover mineral field, an area of prospective Palaeoproterozoic rocks southwest of Tennant Creek that is entirely concealed below younger sedimentary cover rocks. The work is part of an ongoing collaborative effort between Geoscience Australia (GA) and the Northern Territory Geological Survey (NTGS) that aims to develop better understanding of the geological evolution and mineral potential of this region. It is being undertaken as part of the Northern Territory Government’s Resourcing the Territory (RTT) initiative and the Federal Government’s Exploring for the Future (EFTF) program and was carried out under the auspices of the National Collaborative Framework (NCF) between GA and NTGS. The rocks studied were sampled from drill cores acquired under the Northern Territory Government’s Geophysics and Drilling Collaborations program; the drillholes sampled comprise RVDD0002 (Wetherley and Elliston 2019), MXCURD002 (Burke 2015) and R27ARD18 (Anderson 2010). <b>Bibliographic Reference:</b> Cross A, Huston D and Farias P, 2021. Summary of results. Joint NTGS–GA geochronology project: Rover mineral field, Warramunga Province, January–June 2020. <i>Northern Territory Geological Survey</i>, <b>Record 2021-003</b>.

  • SHRIMP U-Pb zircon and monazite geochronology of magmatic, metamorphic and sedimentary rocks sampled from an undercover region informally referred to as ‘East Tennant’, located approximately 200 km east of Tennant Creek, has redefined our knowledge of the geology of this region. These results establish strong temporal links with rocks in the Au-Cu-Bi mineralised Tennant Creek region (Warramunga Province) and the Paleoproterozoic Murphy Province, approximately 270 km to the northeast. Detrital zircon U-Pb analyses of two metasedimentary samples show maximum depositional ages of ca. 1875 Ma and detrital zircon age spectra similar to Warramunga Formation metasedimentary rocks in the Warramunga Province. Additionally, three extrusive rocks and an intermediate intrusive rock have magmatic crystallisation ages of 1858–1849 Ma, synchronous with magmatism in the Warramunga Province associated with the 1860–1845 Ma Tennant Event. Monazite U-Pb analyses of two samples of metapelites from the East Tennant region and Murphy Province record metamorphism at ca. 1845 Ma, which is also synchronous with magmatism associated with the Tennant Event. These new results suggest that the undercover East Tennant region could represent an extension of the Warramunga Province and therefore be prospective for Au-Cu-Bi mineralisation. <b>Citation:</b> Cross, A.J., Clark, A.D., Schofield, A. and Kositcin, N., 2020. New SHRIMP U-Pb zircon and monazite geochronology of the East Tennant region: a possible undercover extension of the Warramunga Province, Tennant Creek. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>The East Tennant Magnetotelluric (MT) Survey is funded under Geoscience Australia’s (GA) Exploring for the Future program. The survey is aimed to assist in regional stratigraphic drilling program to understand basement architecture and mineral potential in the east of Tennant Creek, Northern Territory, Australia. The survey covers an area of approximate 90 km x 100 km. Geoscience Australia contracted Zonge Engineering and Research Organisation (Australia) to undertake the survey from 22nd July to 19th Aug 2019. Broadband Magnetotelluric and Audio Magnetotelluric data were acquired at 131 stations with site spacing of ~2 km to ~15 km. <p>This data package includes MT data originally processed by the contractor and edited MT data by GA for modelling purpose. All the data were industry-standard EDI files. <p>Time series data are available on request from clientservices@ga.gov.au